Bounds for the chromatic index of signed multigraphs

نویسندگان

چکیده

The paper studies edge-coloring of signed multigraphs and extends classical Theorems Shannon K\"onig to multigraphs. We prove that the chromatic index a multigraph $(G,\sigma_G)$ is at most $\lfloor \frac{3}{2} \Delta(G) \rfloor$. Furthermore, balanced $(H,\sigma_H)$ $\Delta(H) + 1$ with $\Delta(H)$ are characterized.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating the chromatic index of multigraphs

It is well known that if G is a multigraph then χ(G) ≥ χ(G) := max{∆(G), Γ(G)}, where χ(G) is the chromatic index of G, χ(G) is the fractional chromatic index of G, ∆(G) is the maximum degree of G, and Γ(G) = max{2|E(G[U ])|/(|U | − 1) : U ⊆ V (G), |U | ≥ 3, |U | is odd}. The conjecture that χ(G) ≤ max{∆(G) + 1, dΓ(G)e} was made independently by Goldberg (1973), Anderson (1977), and Seymour (19...

متن کامل

Chromatic-index critical multigraphs of order 20

A multigraph M with maximum degree (M) is called critical, if the chromatic index 0 (M) > (M) and 0 (M ? e) = 0 (M) ? 1 for each edge e of M. The weak critical graph conjecture 1, 7] claims that there exists a constant c > 0 such that every critical multigraph M with at most c (M) vertices has odd order. We disprove this conjecture by constructing critical multigraphs of order 20 with maximum d...

متن کامل

A Combined Logarithmic Bound on the Chromatic Index of Multigraphs

For any multigraph G of order n, let Φ(G) denote the integer roundup of its fractional chromatic index. We show that the chomatic index χ (G) satisfies χ (G) ≤ Φ(G) + log(min{ n + 1 3 , Φ(G)}). The method used is deterministic (though it extends a famous probabilistic result by Kahn), and different from the re-coloring techniques that are the basis for many of the other known upper bounds on χ ...

متن کامل

A sublinear bound on the chromatic index of multigraphs

The integer round-up 4(G) of the fractional chromatic index yields the standard lower bound for the chromatic index of a multigraph G. We show that if G has even order n, then the chromatic index exceeds 4(G) by at most max{log,,, n, 1 + n/30}. More generally, we show that for any real b, 2/3 <b < 1, the chromatic index of G exceeds 4(G) by at most max{log,,b n, 1 +n(l b)/lO}. This is used to s...

متن کامل

On the list chromatic index of nearly bipartite multigraphs

Galvin ([7]) proved that every k-edge-colorable bipartite multigraph is kedge-choosable. Slivnik ([11]) gave a streamlined proof of Galvin's result. A multigraph G is said to be nearly bipartite if it contains a special vertex Vs such that G Vs is a bipartite multigraph. We use the technique in Slivnik's proof to obtain a list coloring analog of Vizing's theorem ([12]) for nearly bipartite mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2023

ISSN: ['1872-6771', '0166-218X']

DOI: https://doi.org/10.1016/j.dam.2023.05.008